Question |
Answer |
|
start learning
|
|
clk, synchronizacja, zbocza sygnału
|
|
|
transmisja asynchroniczna start learning
|
|
|
|
|
|
start learning
|
|
Wykrywa zmianę nieparzystej liczby bitów
|
|
|
|
start learning
|
|
To suma arytmetyczna wartości liczbowych wszystkich przesłanych bajtów. Wynik dodawania jest doklejany do wiadomości
|
|
|
|
start learning
|
|
CRC jest resztą z binarnego dzielenia ciągu danych przez relatywnie krótki dzielnik, zwany generatorem lub wielomianem CRC
|
|
|
|
start learning
|
|
Proces przygotowania danych do przesyłu przez zaszumiony kanał. Polega na przekształceniu strumienia bitów tak, by był odporny na zakłócenia fizyczne (np. w światłowodzie). Zwiększa niezawodność kosztem pasma
|
|
|
|
start learning
|
|
C - przepustowość kanału [bit/s] W - szerokość pasma [Hz] S/N - moc sygnału/moc szumu (skala liniowa)
|
|
|
|
start learning
|
|
stosunek liczby bitów odebranych z błędami do całkowitej liczby przesłanych bitów
|
|
|
|
start learning
|
|
Ułatwienie projektowania i zrozumienia sieci, Umożliwienie współpracy różnych producentów, uporządkowanie funkcji sieciowych
|
|
|
|
start learning
|
|
Fizyczne przesyłanie bitów (0 i 1) przez medium transmisyjne, Definicja parametrów elektrycznych i mechanicznych. NP Ethernet lub Rs232
|
|
|
|
start learning
|
|
Zapewnienie bezbłędnej transmisji ramek ● Wykrywanie i korekcja błędów (CRC) ● Kontrola dostępu do medium (CSMA/CD, CSMA/CA) Działy: ● MAC (Media Access Control) - zarządza dostępem do medium ● LLC (Logical Link Control) - nadzoruje transmisję ramek
|
|
|
MAC (Media Access Control) start learning
|
|
Podwarstwa MAC (Warstwa 2 OSI) odpowiada za fizyczne adresowanie (adres MAC) i sterowanie dostępem do medium transmisyjnego. Pakuje dane w ramki, zarządza ich bezkolizyjnym przesyłem (np. CSMA/CD, CSMA/CA) oraz sprawdza poprawność danych (suma kontrolna).
|
|
|
|
start learning
|
|
Adresacja, Określenie optymalnej ścieżki przez sieć, Fragmentacja i składanie pakietów
|
|
|
|
start learning
|
|
Zapewnienie niezawodnej komunikacji między aplikacjami, Segmentacja danych i kontrola przepływu, Detekcja i korekcja błędów
|
|
|
|
start learning
|
|
Zarządzanie nawiązywaniem, utrzymywaniem i kończeniem sesji komunikacyjnych, Synchronizacja i ponowne połączenie po przerwie
|
|
|
|
start learning
|
|
Konwersja danych między różnymi formatami, Szyfrowanie i deszyfrowanie danych, Kompresja danych
|
|
|
|
start learning
|
|
Zapewnienie interfejsu pomiędzy użytkownikiem a siecią, Komunikacja między aplikacjami
|
|
|
|
start learning
|
|
zapewnienie zgodności w czasie pomiędzy nadajnikiem a odbiornikiem – aby dane były odczytywane w tych samych momentach, w jakich zostały wysłane
|
|
|
Jak uzyskać synchronizacje start learning
|
|
Zegar nadawcy i odbiorcy muszą pracować z tą samą częstotliwością, Odbiornik może: - odzyskać taktowanie z sygnału danych (np. metodą PLL)- być sterowany wspólnym zegarem(np. w centralach cyfrowych), frame alignment, bit sync-rozpoznanie bitów
|
|
|
|
start learning
|
|
to proces wymiany informacji sterujących między urządzeniami w sieci
|
|
|
|
start learning
|
|
- Zestawianie i rozłączanie połączeń.- Nadzór nad połączeniem (zajętość, zakończenie).- Przenoszenie informacji o błędach lub usługach dodatkowych (np. przekierowanie).- Sterowanie zasobami sieci.
|
|
|
|
start learning
|
|
Pulse Code Modulation-cyfrowa kodowania sygnałów analogowych (np. mowy) oraz podstawowy sposób transmisji w sieciach metoda telekomunikacyjnych. Etapy: próbkowanie itd
|
|
|
|
start learning
|
|
wykorzystuje szerokie pasmo do przesyłu danych. Infrastruktury telekomunikacyjnej i wykorzystywane do tego technologie np.: linia telefoniczna, kable koncentryczne, światłowód i sieci bezprzewodowe.
|
|
|
|
start learning
|
|
(classes of service)-to przydział priorytetów pakietom, jak szybko dany pakiet musi dotrzeć do odbiorcy. Ma to bezpośredni wpływ na QoS (Quality of service) oraz GoS (Grade of Service)
|
|
|
IP (Internet Protocol) – Tradycyjny Routing start learning
|
|
Jest to bezpołączeniowy protokół warstwy 3 (Sieciowej), oparty na adresowaniu logicznym (IPv4/IPv6).
|
|
|
MPLS (Multiprotocol Label Switching) start learning
|
|
(labels) do przesyłania pakietów bez potrzeby analizy pakietu za każdym razem przejścia przez router.(warstwa 2.5). Router E-LSR lub LER (Edge Label Switching Router) nadaje etykietę pakietowi i przechodząc przez kolejne LSR pakiet przesyłany jest dalej.
|
|
|
Mechanizm (Label Swapping) start learning
|
|
LER Ingress: Klasyfikacja IP → dodanie etykiety (PUSH). LSR: Ignoruje IP. Szybka podmiana etykiety wejściowej na wyjściową (SWAP) w oparciu o tablicę. LER Egress: Usunięcie etykiety (POP) → wysłanie czystego IP.
|
|
|
|
start learning
|
|
Transmisja danych liniami telefonicznymi (miedź). Wykorzystuje podział częstotliwości (FDM): dół pasma dla głosu, góra dla danych. ADSL: Asymetryczny (Download > Upload). Wada: Tłumienie – prędkość drastycznie spada wraz z odległością od centrali.
|
|
|
|
start learning
|
|
Pasywna sieć optyczna typu punkt-wielopunkt. Elementy: OLT (centrala) → Splitter (pasywny dzielnik) → ONT (klient). Działanie: Downstream: Broadcast (wszyscy dostają wszystko, filtrują swoje). Upstream:(nadawanie w przydzielonych szczelinach czasu).
|
|
|
Architektura sieci komurkowej start learning
|
|
User Equipment (UE) ● Telefon, korzysta z karty SIM do identyfikacji w sieci 2. Radio Access Network (RAN) ● Stacje bazowe, w 2/3G nazywane BTS/NodeB, w 4G eNodeB, a w 5G gNodeB 3. Core Network (CN) ● Centrala operatora, zarządza całą siecią
|
|
|
podział pasma sieci komórkowej start learning
|
|
TDD (Time Divison Duplex) Transmisja odbywa się w ustalonych slotach czasowych przeznaczonych osobno na uplink i na downlink na tej samej częstotliwości. FDD (Frequency DIvision Duplex) Podział na dwa symetryczne bloki częstotliwości,
|
|
|
|
start learning
|
|
Cel: Wyłącznie rozmowy głosowe (brak SMS). Technologia: Sygnał w pełni analogowy (FM). Wielodostęp: FDMA (każdy ma osobny kanał częstotliwości). Wady: Brak szyfrowania (łatwy podsłuch), brak roamingu, duże telefony
|
|
|
|
start learning
|
|
Przełom: Sygnał cyfrowy, karty SIM, szyfrowanie, roaming. Usługi: Głos, SMS, proste dane (GPRS). Technologia: Komutacja łączy (Circuit Switching). Wielodostęp: TDMA (podział czasu na szczeliny - rozmowa na zmianę).
|
|
|
|
start learning
|
|
Cel: Mobilny Internet, wideorozmowy. Technologia: HSPA (szybszy transfer). Wielodostęp: CDMA/WCDMA (kodowy). Użytkownicy nadają w tym samym czasie na szerokim paśmie, a rozróżniani są unikalnymi kodami matematycznymi
|
|
|
|
start learning
|
|
Architektura: All-IP (tylko pakiety). Głos przesyłany jako dane (VoLTE). Wielodostęp: OFDMA (podział pasma na setki podnośnych). Cechy: Szerokopasmowy Internet (do 1 Gb/s), niskie opóźnienia (ok. 20ms), streaming HD
|
|
|
|
start learning
|
|
3 cele: eMBB (duża prędkość), mMTC (masowe IoT, miliony czujników), URLLC (niezawodność, opóźnienia poniżej 1ms dla aut). Tech: Massive MIMO (dużo anten), Beamforming (kierunkowanie wiązki), Network Slicing (krojenie sieci)
|
|
|
|
start learning
|
|
Najstarsza technika (1G). Pasmo radiowe dzielone jest na węższe kanały częstotliwości. Każdy użytkownik otrzymuje jeden kanał na wyłączność na czas rozmowy. Jest mało efektywna (cisza też zajmuje kanał)
|
|
|
|
start learning
|
|
Użytkownicy korzystają z tej samej częstotliwości, ale w różnych momentach. Czas podzielony jest na szczeliny (sloty). Nadajesz tylko w swoim krótkim okienku czasowym, potem czekasz na kolejną kolej.
|
|
|
|
start learning
|
|
wszyscy nadają w tym samym czasie na tej samej szerokiej częstotliwości (rozpraszanie widma). Każdy sygnał jest mnożony przez unikalny kod matematyczny. Odbiornik wyławia właściwą rozmowę znając ten kod
|
|
|
|
start learning
|
|
Podstawa 4G i 5G. Pasmo dzielone na tysiące gęsto upakowanych podnośnych, które są ortogonalne (nie zakłócają się wzajemnie). Użytkownikowi przydziela się grupę podnośnych w zależności od potrzeb. Bardzo odporna na zaniki sygnału
|
|
|
|
start learning
|
|
(Wavelength Division Multiplexing)-Technika multipleksacji falowej polega na jednoczesnym przesyłaniu wielu sygnałów świetlnych o różnych długościach fal tym samym włóknem światłowodowym. Każda długość fali przenosi niezależny kanał danych.
|
|
|
|
start learning
|
|
Całkowitego Wewnętrznego Odbicia. Światło wpuszczone do rdzenia pod odpowiednim kątem (mniejszym niż kąt graniczny) odbija się od granicy rdzeń-płaszcz jak od lustra i "zygzakiem" wędruje na koniec przewodu.
|
|
|
Budowa włókna światłowodu start learning
|
|
1) Rdzeń (Core): Środek, którym biegnie światło. Ma wyższy współczynnik załamania światła ($n_1$). Płaszcz (Cladding): Otoczka rdzenia. Ma niższy współczynnik załamania światła 2.
|
|
|
|
start learning
|
|
Rozpraszanie Rayleigha: Fizyczna natura szkła. Fotony zderzają się z cząsteczkami w szkle. Zasada: Im krótsza fala(fiol) tym większe rozpraszanie Absorpcja: Zanieczyszczenia wodne w szkle "pożerają" światło na konkretnych długościach fali
|
|
|
|
start learning
|
|
I Okno (850 nm): Duże tłumienie. Tanie lasery/LED. II Okno (1310 nm): Niskie tłumienie, zerowa dyspersja, średnie dyst. III Okno (1550 nm): Najniższe tłumienie (ok. 0.2 dB/km)
|
|
|
Wzmacnianie Sygnału Optycznego start learning
|
|
Kiedyś używano regeneratorów O-E-O. EDFA: W pełni optyczny wzmacniacz (bez konw na I). Działa w III oknie (1550 nm). Wykorzystuje odcinek światłowodu domieszkowany Erbem oraz laser pompujący, który dostarcza energię do wzmocnienia przelatującego sygnału.
|
|
|
Redundancja w kodowaniu kanałowym start learning
|
|
Celowe dodanie nadmiarowych bitów do wiadomości. Nie niosą one nowej treści, ale tworzą matematyczną zależność, która pozwala odtworzyć oryginał w razie utraty części sygnału. Podstawa bezpieczeństwa danych.
|
|
|
|
start learning
|
|
Wstrzykiwanie dodatkowych bitów (zazwyczaj "0" po ciągu "1"), aby dane nie zostały pomylone z flagą końca ramki. Zapewnia przejrzystość transmisji i ułatwia synchronizację zegarów nadawcy i odbiorcy.
|
|
|
Kod Hamminga do korekcji błędów start learning
|
|
Algorytm korekcji błędów (FEC). Dodaje bity parzystości na pozycjach będących potęgami dwójki (1, 2, 4...). Każdy bit kontrolny „pilnuje” specyficznej grupy bitów. Suma błędnych kontroli wskazuje precyzyjny indeks bita, który należy negować (naprawić).
|
|
|
Czym jest SIP w technologii VoIP? start learning
|
|
Session Initiation Protocol to tekstowy protokół sygnalizacyjny wzorowany na HTTP. Odpowiada za zestawianie, modyfikację i kończenie sesji multimedialnych. Jest elastyczny i powszechnie stosowany w telefonii IP.
|
|
|
Czym charakteryzuje się standard H. 323? start learning
|
|
To binarny, złożony standard ITU-T dla wideokonferencji i VoIP. Ma architekturę scentralizowaną z Gatekeeperem. Wywodzi się z klasycznej telekomunikacji (ISDN), przez co jest trudniejszy w konfiguracji niż SIP.
|
|
|
akie są elementy architektury SIP? start learning
|
|
User Agent (klient), Proxy Server (pośrednik przekazujący żądania), Registrar (serwer rejestrujący lokalizację użytkowników) oraz Redirect Server.
|
|
|
Za co odpowiada Gatekeeper w systemach H. 323? start learning
|
|
Pełni rolę "mózgu" sieci: zarządza pasmem, autoryzuje użytkowników, tłumaczy aliasy na adresy IP oraz zapewnia kontrolę nad ruchem w strefie.
|
|
|
Jakie są klasy kodów odpowiedzi w protokole SIP? start learning
|
|
1xx: Informacyjne (np. 180 Ringing); 2xx: Sukces (200 OK); 3xx: Przekierowanie; 4xx: Błąd klienta (np. 404 Not Found); 5xx: Błąd serwera (503 Service Unavailable); 6xx: Błąd globalny (603 Decline). Kody oparte są na strukturze protokołu HTTP.
|
|
|
Czym jest VoIP i z czego się składa? start learning
|
|
Technologia przesyłu głosu przez sieci IP. Składa się z sygnalizacji (SIP/H. 323 - ustawienie sesji) oraz transportu (RTP - przesył dźwięku). Służy do taniej komunikacji multimedialnej, niezależnej od tradycyjnej infrastruktury telefonicznej.
|
|
|
Czym jest protokół RTP w kontekście VoIP? start learning
|
|
Real-time Transport Protocol służy do przesyłania strumieni audio/wideo w czasie rzeczywistym. Podczas gdy SIP zestawia połączenie, RTP transportuje faktyczne dane (głos). Wykorzystuje UDP, by minimalizować opóźnienia kosztem braku retransmisji.
|
|
|